Some Series of Rectangular Designs

J. Subramani
Srivenkateswara College, New Delhi-110021

(Received : April, 1991)

Summary

> The present paper describes some methods of constructing rectangular designs.
> Key uords : L2 - designs; rectangular assoclation scheme.

Introduction

A rectangular design is a three associate partially balanced incomplete block design based on the rectangular association scheme introduced by Vartak [5]. For the definition of these designs see e.g. Dey [1] (p. 203).

Several methods for constructing rectangular designs are available in literature, see for example, Ghosh and Das [2], Goswanì, Majumdar and Pal [3], Kageyama and Mohan [4], etc. In the present paper, some more methods of constructing rectangular designs are presented.

2. Methods of constructing rectangular designs

Theorem 2.1: There always exists rectangular designs with parameters

$$
\begin{align*}
& v=m n, b=\binom{m}{s}\binom{n}{t}, r=\binom{m-1}{s-1}\binom{n-1}{t-1}, k=s t, \lambda_{1}=\binom{m-1}{s-1}\binom{n-2}{t-2} \\
& \lambda_{2}=\binom{m-2}{s-2}\binom{n-1}{t-1} \quad \text { and } \quad \lambda_{3}=\binom{m-2}{s-2}\binom{n-2}{t-2} \tag{2.1}\\
& v=m n, b=\binom{m}{s}\binom{n}{t}, r=\binom{m-1}{s-1}\binom{n-1}{t-1}, k=s t, \lambda_{1}=\binom{m-2}{s-2}\binom{n-1}{t-1}
\end{align*}
$$

$$
\begin{equation*}
\lambda_{2}=\binom{m-1}{s-1}\binom{n-2}{t-2} \quad \text { and } \quad \lambda_{3}=\binom{m-2}{s-2}\binom{n-2}{t-2} \tag{2.2}
\end{equation*}
$$

for any integers $m, s, n, t, m \geq s \geq 2$ and $n \geq t \geq 2$.
Proof : Let $v=m n$ be the number of symbols arranged in a rectangular matrix A with m rows and n columns. By selecting all possible submatrices of order $s \times t$ and writing the elements of each sub matrix as a block of size st, one can get the rectangular design with parameters given in (2.1).

Similarly by arranging the v symbols in a rectangular matrix A^{*} with n rows and m columns and taking all possible $t \times s$ submatrices one can obtain the rectangular design with parameters given in (2.2).

Corollary 2.1 : If $s=m-1$ and $t=n-1$ in (2.1) and (2.2). then the resulting rectangular designs are symmetric with parameters

$$
\begin{align*}
& v=m n=b, r=(m-1)(n-1)=k, \lambda_{1}=(m-1)(n-2) \\
& \lambda_{2}=(m-2)(n-1) \text { and } \lambda_{3}=(m-2)(n-2) \tag{2.3}\\
& v=\operatorname{mn}=b, r=(m-1)(n-1)=k, \lambda_{1}=(m-2)(n-1) \\
& \lambda_{2}=(m-1)(n-2) \text { and } \lambda_{3}=(m-2)(n-2) \tag{2.4}
\end{align*}
$$

Corollary 2.2: If $m=n$ and $s=t$ in (2.1) and (2.2), then the resulting designs are two associate class L2-designs with parameters

$$
v=m^{2}, b=\binom{m}{s}^{2}, r=\binom{m-1}{s-1}^{2}, k=s^{2}, \lambda_{1}=\binom{m-1}{s-1}\binom{m-2}{s-2}
$$

and $\quad \lambda_{2}=\binom{m-2}{s-2}^{2}$ provided $m>s \geq 2$.

Corollary 2.3 : If $s=m-1$ in (2.5), then the resulting $L_{2}-$ design is a symmetric with parameters

$$
\begin{align*}
& v=m^{2}=b, r=(m-1)^{2}=k, \lambda_{1}=(m-1)(m-2) \text { and } \\
& \lambda_{2}=(m-2)^{2} \tag{2.6}
\end{align*}
$$

Theorem 2.2 : There always exists rectangular designs with
parameters

$$
\begin{align*}
& v=m n, b=m n(n-1), r=m(n-1), k=m, \lambda_{1}=0, \lambda_{2}=n-1 \\
& \text { and } \lambda_{3}=2 \tag{2.7}\\
& v=m n, b=m n(n-1), r=m(n-1), k=m, \lambda_{1}=n-1, \lambda_{2}=0 \\
& \text { and } \lambda_{3}=2 \tag{2.8}
\end{align*}
$$

Proof : Let $v=m n$ be the number of symbols arranged in a rectangular matrix with m rows and n columns. Let $a_{1 j}$ be the element in the (i, j)th position of A.

For each, entry $a_{1 j}$, omit the j th column; replace the remaining ($n-1$) elements in the ith row by $a_{1 y}$ and form each column as a block of size m. This way one can have $m n(n-1)$ blocks of size m, which is the rectangular design with the parameters given in (2.7).

Similarly arrange the v symbols in a rectangular matrix A^{*} with n rows 'and m columns. For each $a_{i j}^{*}$ omit the ith row replace the remaining ($n-1$) elements in the j th column and form each row as a block one may get the rectangular design with parameters given in (2.8).

Theorem 2.3: There always exists rectangular designs with parameters

$$
\begin{align*}
& v=m n, b=m n^{2}, r=m n, k=m, \lambda_{1}=0, \lambda_{2}=m+n-1 \text { and } \\
& \lambda_{3}=2 \tag{2.9}
\end{align*}
$$

$$
\begin{align*}
& v=m n, b=m^{2}, r=m n, k=m, \lambda_{1}=m+n-1, \lambda_{2}=0 \text { and } \\
& \lambda_{3}=2 \tag{2.10}
\end{align*}
$$

Proof: Let A and A^{*} be the two rectangular matices of order $m \times n$ and $\mathrm{n} \times \mathrm{m}$ respectively as defined in Theorem 2.2.

For each of $a_{4 j}$, replace the ith row by $a_{4 j}$ and form each column as a block. This leads to mn^{2} blocks of size m , which constitute the rectangular design with parameters given in (2.9).

In a stmilar manner, one may construct the rectangular design with parameters given in (2.10) from the matix A^{*}.

Theorem 2:4: There always exists rectangular designs with parameters

$$
\begin{align*}
& v=m n, b=n(m n-m+1), r=m n-m+1, k=m, \lambda_{1}=0, \lambda_{2}=n \\
& \text { and } \lambda_{3}=2 \tag{2.11}
\end{align*}
$$

$$
\begin{align*}
& v=m n, b=n(m n-m+1), r=m n-m+1, k=m, \lambda_{1}=n, \lambda_{2}=0 \\
& \text { and } \lambda_{3}=2 \tag{2.12}
\end{align*}
$$

Proof: The rectangular design with parameters (2.11) is obtained by taking each column of the matrix A as a block together with the rectangular design with parameters (2.7).

Similarly the rectangular design with parameters (2.12) is obtained by taking each row of the matrix A as a block together with the rectangular design with parameters (2.8).

Example. Let $\mathrm{m}=3, \mathrm{n}=4, \mathrm{~s}=2$ and $\mathrm{t}=3$. Then the parameters of the rectangular designs given in (2.3) and (2.4) denoted by D_{1} and D_{2} are as follows:

$$
\begin{array}{ll}
v=12=b, r=6=k, \lambda_{1}=4, \lambda_{2}=3, & \lambda_{3}=2 \\
v=12=b, r=6=k, \lambda_{1}=3, \lambda_{2}=4 ; & \lambda_{3}=2
\end{array}
$$

The matrics A and A^{*} and the rectangular designs D_{1} and D_{2} are obtained as
$A=\left[\begin{array}{rrrr}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12\end{array}\right], \quad A^{*}=\left[\begin{array}{rrr}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12\end{array}\right]$
$\mathrm{D}_{1}=\left[\begin{array}{rrrrrr}1 & 2 & 3 & 5 & 6 & 7 \\ 1 & 2 & 3 & 9 & 10 & 11 \\ 5 & 6 & 7 & 9 & 10 & 11 \\ 1 & 2 & 4 & 5 & 6 & 8 \\ 1 & 2 & 4 & 9 & 10 & 12 \\ 5 & 6 & 8 & 9 & 10 & 12 \\ 1 & 3 & 4 & 5 & 7 & 8 \\ 1 & 3 & 4 & 9 & 11 & 12 \\ 2 & 3 & 4 & 6 & 7 & 8 \\ 2 & 3 & 4 & 10 & 11 & 12 \\ 6 & 7 & 8 & 10 & 11 & 12 \\ 5 & 7 & 8 & 9 & 11 & 12\end{array}\right], \mathrm{D}_{2}=\left[\begin{array}{rrrrrr}1 & 2 & 4 & 5 & 7 & 8 \\ 1 & 2 & 4 & 5 & 10 & 11 \\ 1 & 2 & 7 & 8 & 10 & 11 \\ 4 & 5 & 7 & 8 & 10 & 11 \\ 1 & 3 & 4 & 6 & 7 & 9 \\ 1 & 3 & 4 & 6 & 10 & 12 \\ 1 & 3 & 7 & 9 & 10 & 12 \\ 4 & 6 & 7 & 9 & 10 & 12 \\ 2 & 3 & 5 & 6 & 8 & 9 \\ 2 & 3 & 8 & 9 & 11 & 12 \\ 5 & 6 & 8 & 9 & 11 & 12 \\ 2 & 3 & 5 & 8 & 11 & 12\end{array}\right]$

REFERENCES

[1]. Dey, A., 1986. Theory of Block Designs, Wiley Eastern, New Delhi
[2] Ghosh, D.K. and Das, M.N., 1989. Construction of Two Way Group Divisible Destgns, Sankhya, Sertes B, 51, 331-334.
[3] Goswami, K.K. Majumder, A. and Pal, S., 1990. A New Class of Rectangular Designs, Indtan Soc. Agri Statist, 42, 239-243.

14] Kageyama, S and Mohan, R.N., 1985. Construction of resolvable PBIB Designs, Bulletin Calcutta Statist Asso., 34, 221-224.
[5] Vartak, M.N., 1955. On Application of Kronecker Product of Matrices to Statistical Designs, Math Statist, 26, 420-438.

