Jour. Ind. Soc. Ag. Statistics 44 (2), 1992 : 155–159

Some Series of Rectangular Designs

J. Subramani

Srivenkateswara College, New Delhi-110021 (Received : April, 1991)

Summary

The present paper describes some methods of constructing rectangular designs.

Key words : L2 - designs; rectangular association scheme.

Introduction

A rectangular design is a three associate partially balanced incomplete block design based on the rectangular association scheme introduced by Vartak [5]. For the definition of these designs see e.g. Dey [1] (p. 203).

Several methods for constructing rectangular designs are available in literature, see for example, Ghosh and Das [2], Goswami, Majumdar and Pal [3], Kageyama and Mohan [4], etc. In the present paper, some more methods of constructing rectangular designs are presented.

2. Methods of constructing rectangular designs

Theorem 2.1: There always exists rectangular designs with parameters

$$\mathbf{v} = \mathbf{mn}, \mathbf{b} = \binom{m}{s}\binom{n}{t}, \mathbf{r} = \binom{m-1}{s-1}\binom{n-1}{t-1}, \mathbf{k} = st, \lambda_1 = \binom{m-1}{s-1}\binom{n-2}{t-2}$$
$$\lambda_2 = \binom{m-2}{s-2}\binom{n-1}{t-1} \quad \text{and} \quad \lambda_3 = \binom{m-2}{s-2}\binom{n-2}{t-2} \tag{2.1}$$

v = mn, b=
$$\binom{m}{s}\binom{n}{t}$$
, r= $\binom{m-1}{s-1}\binom{n-1}{t-1}$, k=st, $\lambda_1 = \binom{m-2}{s-2}\binom{n-1}{t-1}$

JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

$$\lambda_{2} = \binom{m-1}{s-1} \binom{n-2}{t-2}$$
 and $\lambda_{3} = \binom{m-2}{s-2} \binom{n-2}{t-2}$ (2.2)

for any integers m, s, n, t, $m \ge s \ge 2$ and $n \ge t \ge 2$.

Proof : Let v = mn be the number of symbols arranged in a rectangular matrix A with m rows and n columns. By selecting all possible submatrices of order $s \times t$ and writing the elements of each sub matrix as a block of size st, one can get the rectangular design with parameters given in (2.1).

Similarly by arranging the v symbols in a rectangular matrix A^{*} with n rows and m columns and taking all possible tx s submatrices one can obtain the rectangular design with parameters given in (2.2).

Corollary 2.1 : If s = m-1 and t = n-1 in (2.1) and (2.2), then the resulting rectangular designs are symmetric with parameters

$$v = mn = b, r = (m-1)(n-1) = k, \lambda_1 = (m-1)(n-2)$$

$$\lambda_2 = (m-2)(n-1) \text{ and } \lambda_3 = (m-2)(n-2)$$
(2.3)

$$v = mn = b, r = (m-1)(n-1) = k, \lambda_1 = (m-2)(n-1)$$

 $\lambda_2 = (m-1)(n-2) \text{ and } \lambda_3 = (m-2)(n-2)$ (2.4)

Corollary 2.2: If m = n and s = t in (2.1) and (2.2), then the resulting designs are two associate class L2-designs with parameters

$$\mathbf{v} = \mathbf{m}^{2}, \ \mathbf{b} = {\binom{\mathbf{m}}{\mathbf{s}}}^{2}, \ \mathbf{r} = {\binom{\mathbf{m}-1}{\mathbf{s}-1}}^{2}, \ \mathbf{k} = \mathbf{s}^{2}, \ \lambda_{1} = {\binom{\mathbf{m}-1}{\mathbf{s}-1}} {\binom{\mathbf{m}-2}{\mathbf{s}-2}}$$
$$\lambda_{2} = {\binom{\mathbf{m}-2}{\mathbf{s}-2}}^{2} \text{ provided } \mathbf{m} > \mathbf{s} \ge 2.$$
(2.5)

and

Corollary 2.3 : If s = m-1 in (2.5), then the resulting L_2 – design is a symmetric with parameters

$$v = m^2 = b, r = (m-1)^2 = k, \lambda_1 = (m-1) (m-2)$$
 and
 $\lambda_2 = (m-2)^2$ (2.6)

Theorem 2.2 : There always exists rectangular designs with

156

parameters

 $v = mn, b = mn(n-1), r = m(n-1), k = m, \lambda_1 = 0, \lambda_2 = n-1$ and $\lambda_3 = 2$ (2.7)

v = mn, b = mn(n-1), r = m(n-1), k = m, $\lambda_1 = n-1$, $\lambda_2 = 0$

and $\lambda_3 = 2$

Proof: Let v = mn be the number of symbols arranged in a rectangular matrix with m rows and n columns. Let a_{ij} be the element in the (i, j)th position of A.

For each entry a_{ij} , omit the jth column; replace the remaining (n-1) elements in the ith row by a_{ij} and form each column as a block of size m. This way one can have mn(n-1) blocks of size m, which is the rectangular design with the parameters given in (2.7).

Similarly arrange the v symbols in a rectangular matrix A^* with n rows and m columns. For each a_{ij}^* omit the ith row replace the remaining (n-1) elements in the jth column and form each row as a block one may get the rectangular design with parameters given in (2.8).

Theorem 2.3: There always exists rectangular designs with parameters

 $v = mn, b = mn^2, r = mn, k = m, \lambda_1 = 0, \lambda_2 = m+n-1$ and $\lambda_3 = 2$ (2.9)

v = mn, $b = mn^2$, r = mn, k = m, $\lambda_1 = m+n-1$, $\lambda_2 = 0$ and $\lambda_3 = 2$ (2.10)

Proof: Let A and A^{$^{\circ}$} be the two rectangular matices of order m× n and n× m respectively as defined in Theorem 2.2.

For each of a_{ij} , replace the ith row by a_{ij} and form each column as a block. This leads to mn^2 blocks of size m, which constitute the rectangular design with parameters given in (2.9).

In a similar manner, one may construct the rectangular design with parameters given in (2.10) from the matix A^{*}.

(2.8)

Theorem 2.4: There always exists rectangular designs with parameters

 $v = mn, b = n(mn-m+1), r = mn-m+1, k = m, \lambda_1 = 0, \lambda_2 = n$ and $\lambda_3 = 2$ (2.11)

v = mn, b = n(mn-m+1), r = mn-m+1, k=m, $\lambda_1 = n$, $\lambda_2 = 0$ and $\lambda_3 = 2$ (2.12).

Proof: The rectangular design with parameters (2.11) is obtained by taking each column of the matrix A as a block together with the rectangular design with parameters (2.7).

Similarly the rectangular design with parameters (2.12) is obtained by taking each row of the matrix A as a block together with the rectangular design with parameters (2.8).

Example. Let m = 3, n = 4, s = 2 and t = 3. Then the parameters of the rectangular designs given in (2.3) and (2.4) denoted by D_1 and D_2 are as follows:

 $v = 12 = b, r = 6 = k, \lambda_1 = 4, \lambda_2 = 3, \lambda_3 = 2$

 $v = 12 = b, r = 6 = k, \lambda_1 = 3, \lambda_2 = 4, \lambda_3 = 2$

The matrics A and A^{\bullet} and the rectangular designs D_1 and D_2 are obtained as

A =	1 5 9	2 _6 10	3 7 11	4 8 12		1	A* = [1 4 7 10	2 5 8 11	3 6 9 12				
	[]	2	ġ	5່	6	7]	[1	2	4	5	7	8]	
D1-	1	2	3	9	10	11	, D2=	1	2	4	5	10	11	
	5	6	7	9	10	11		1	2	7	5 8	10	11	
	1	2	4	5	6	8		4	2 5	7	8	10	11	
	1	2	4	9	10	12		1	3	4	6	7	9	
	5	6	8	9	10	12		1	3	-4	6	10	12	
	1	3	4	. 5	7	8		1	3	7	9	10	12	, I
	1	3	4	9	11	12		4	6	7	9	10	12	
	2	3	4	. 6	7	8		2	3	5	6	8	9.	
	2	3	4	10	11	12		2 5	3	8	9	11	12	
	6	7	8	10	11	12			6	8 5	· 9	11	. 12	
	5	7	8	9	11	12		2	3	5	6	· 11	12	

158

SOME SERIES OF RECTANGULAR DESIGNS

REFERENCES

- [1] Dey, A., 1986. Theory of Block Designs, Wiley Eastern, New Delhi
- [2] Ghosh, D.K. and Das, M.N., 1989. Construction of Two Way Group Divisible Designs, Sankhya, Series B, **51**, 331-334.
- [3] Goswami, K.K. Majumder, A. and Pal, S., 1990. A New Class of Rectangular Designs, Indian Soc. Agrl. Statist, 42, 239-243.
- [4] Kageyama, S and Mohan, R.N., 1985. Construction of resolvable PBIB Designs, Bulletin Calcutta Statist Asso., **34**, 221-224.
- [5] Vartak, M.N., 1955. On Application of Kronecker Product of Matrices to Statistical Designs, *Math Statist.*, **26**, 420-438.